Arterial Vascular Complications after Total Knee Arthroplasty Decrease the Quality of Post-op Rehabilitation (A Case Report)

Ivet Koleva¹, Frederic Milvoy² and Borislav Yoshinov³

DOI:10.9734/bpi/mapr/v1

ABSTRACT

Introduction: Routinely patients with hip or knee arthroplasty are transferred from acute clinic to rehabilitation department at an ever earlier stage (one week post-op). The most frequent complications after lower extremity arthroplasty are: local pain, edema, contracture, tardive calcification, infection, hemorrhage, pulmonary embolism and deep vein thrombosis. Sometimes unexpected complications can provoke a delay or even suspension of the rehabilitation.

Aims of the Study: The principal objective of the current article is to remind to the wide public the possible presence (and subsequent care) of other complications, e.g. the lower limb arteritis.

Case Presentation: The presented patient is 77 years old male. Hospitalized in our PRM Department one week after operation, with the objective of post-op orthopedic rehabilitation after total knee arthroplasty (for advanced gonarthrosis - genu varum with angle 4°). Arterial Echo-Doppler of the lower extremities: Acute thrombosis of the left femoral superficial arteria, and the left popliteal supra-articular arteria (aneurysm of 30 mm), missing images of retro & supra-articular popliteal arteriae. Urgent operation was realized for the left leg diagnosed with Arteritis: Femoro-peroneal distal by-pass graft in the intern saphenous vein with angioplasty of the distal anastomosis. After the operation, the rehabilitation process was adapted to this tardive complication.

Discussion: In every case our goal is to prevent possible complications and to assure a high quality of the rehabilitation, respectively – an improvement of the patient’s quality of care and quality of life.

Conclusion: Vascular complications after joint replacement can postpone or even interrupt the fluency of the rehab process. In every clinical case the PRM & OT medical doctors must be immediately alerted of any suspicion for complication or significant variation in expected progression / outcomes.

Keywords: Knee arthroplasty; complication; arteritis; rehabilitation; physiotherapy.

1. INTRODUCTION

The joint replacement (endoprosthesis, arthroplasty) is frequently applied in cases with permanent pain complaints due to advanced arthrosis, joints deformations and calcifications that do not respond to intra-articular drug injections or simple physiotherapy and rehabilitation [1,2]. Total joint replacement/arthroplasty is regarded as the best orthopaedic surgery for advanced osteoarthritis. It can potentially reduce pain and improve joint function. Unfortunately, arthroplasty is not recommended for young patients, as the artificial implant has a finite lifespan (usually 10–15 years). In addition, the long-term results of arthroplasty differ significantly [3,4].

Routine, patients with hip or knee arthroplasty are transferred from acute to rehabilitation (rehab) department at an ever earlier stage (one week post-op).
In post-op rehab, major goals are the improvement of the active and passive range of motion of the respective joint (knee or hip); the amelioration of the patient’s state; the transfers, posture and gait training; the resocialization of patient and the restoration of his / her autonomy in everyday life [5,6].

Multiple complications can occur after hip arthroplasty. Some of them may be unavoidable despite surgeon's attention and care to prevent complications. However, many complications are preventable with surgeon's careful attention and efforts [7]. The most frequent complications after lower extremity arthroplasty are indisputably: local pain, edema, tardive calcification (due to general osteoporosis), infection or hemorrhage; development of joint or muscle contractures, pulmonary embolism and deep vein thrombosis [1,5].

Sometimes unexpected atypical complications can occur and provoke an important delay or even suspension of the normal rehabilitation process. This is the present case.

The principal objective of the current article is to remind to the wide public the possible occurrence (and the subsequent care) of rare complications, like the lower limb arteritis [8].

2. CASE PRESENTATION

2.1 Patient’s Presentation

The presented patient is a 77 years old male. Hospitalized in our PRM Department one week after operation, with the objective of post-op orthopedic rehabilitation after total knee arthroplasty, for advanced femoro-tibial arthrosis - genu varum with angle = 4° (gonarthrosis). Figs. 1 and 2 present radiographies of patient’s knee before and after operation.

Details of the operative protocol: Total knee arthroplasty, prosthesis type Smith Nephew TC + without preservation of the posterior cruciate ligament (PCL); femur - size 8, tibial rotatory base – size 8, tibial plateau - polyethylene 11 mm; Patella arthroplasty (S Celle 29/8). Loco-regional anesthesia (rachis anesthesia).

Active co-morbidities: Arterial hypertension; ischemic heart disease.

Previous diseases: Thrombophlebitis, Deep Vein Thrombosis (DVT x 2); Pulmonary Embolism; Hemorrhoids; Cataract; bilateral Total Hip Replacements - Arthroplasty (right THA – in 2001, left THA – in 2013) – Fig. 3; Appendectomy.

No previous history of arteriosclerosis with other locations.
Not any previous skin ulcers or necrosis with difficult healing. No diabetes.
No obesity. BMI = 24,6.
Not at all addictions to alcohol or tobacco use.

Patient complaints:

Patient suffers from excessive pain and stiffness in the left knee and muscles around it;
He had difficulties in standing up, transfers and mobility; the autonomic gait was practically impossible.

His autonomy in activities of daily living (ADL) was reduced;

Clinical exam before rehabilitation [9]:

Limited range of motion (ROM) of the correspondent lower extremity; Post-operative cicatrix – with complications.

ROM of the left knee: active flexion - 75°, passive flexion - 90° (with tolerable pain); active extension was reduced to 10°. Manual muscle test (MMT) for muscles around the left knee: MMT=3/5 for vastus medialis & vastus lateralis.
Reduced capacity for transfers; Verticalization realized; Reduced capacity for autonomic gait:
locomotion is possible with technical aids (walker) and with an assistant physiotherapist (PT).

Fig. 1. Gonarthrosis before the operation – in sitting (a) and standing (b) position (genu varum with angle 4°)

Fig. 2. Recent knee endoprosthesis – due to total knee replacement (X-ray after operation)
Intensive pain – in bed and during movements (VAS=8/10).

Small black spot (necrosis of diameter of 2 cm) - present at the surface of the first toe of left foot (Fig. 5a). Absent pulse of the left posterior tibial artery and the left dorsalis pedis artery.

ICF (International classification of functioning) assessment [10]

- Impairments of body functions – left leg pain, muscle weakness, and restricted knee ROM;
- Changes in body structures;
- Activity limitation - limited walking ability and problems with putting on socks;
- Participation restrictions - reduced participation in leisure activities;
- Decrease of the patient’s level of autonomy.

Biological constants:

RR 140/85 mm Hg, frequency – 72 beats/min., saturation – 100%.

LAB exam: Normal Hb, Leuco, Thrombo; ionogram, lipid and glucidic patterns. Transient increase of CRP. Level of Vitamin D (25-OH D) = 7 ng/ml.

Cardiological consultation (with Electrocardiography, Echocardiography and Doppler): Possible ischemic P wave, preserved rejection function of the left ventricle.

Venous Echo-Doppler: Venous Echo-Doppler of the lower extremities: without signs of acute deep vein thrombosis (DVT), but DVT sequelae: residual thrombi (non-occlusive) in: femoralis communis dextra, femoralis superficialis, poplitea sinistra.
Arterial Echo-Doppler: Arterial Echo-Doppler of the lower extremities (Fig. 4a): Acute thrombosis of the left femoral superficial artery, and of the left popliteal supra-articular artery (aneurysm of 30 mm), missing images of retro & supra-articular popliteal arteries.

Contrast Arteriography (Fig. 4b) confirmed the diagnosis of arteritis and thrombosis.

Urgent operation was needed for the left leg: distal femoro-peroneal by-pass in the intern saphenous vein with angioplasty of the distal anastomosis. (Post-op cicatrix in Fig. 5b-d).

After the operation: secretion of the operative cicatrix with temperature, sedimentation time 140 mm at the first hour, C-reactive protein /CRP/ 71,7 mg/L, isolation of colonies of Escherichia coli; antibiotic course with Amoxicillin-Clavulanic acid (Augmentin) for 10 days.

Fig. 4. Arterial Doppler & contrast arteriography (before the by-pass operation)

Pain: Pain in the left foot and toes (Visual analogue scale - VAS 6/10).

Radiography: Osteochondritis of the astragalin dome.

Scanner: Arthrosis, subchondral lesions of the talus dome, no signs of bone infarct.

2.2 PRM Program of Care [11,12]

Goal: Functional recovery of the operated leg, with an accent on gait recovery.

Tasks:

- Recovery of the stability and mobility of the lower limb joints;
- Restoration of the muscle and ligament balance, accentuating on muscles around the knee joint; keeping the knee in the economic limb biomechanics;
- Control of pain, cicatrix, ROM;
Arterial Vascular Complications after Total Knee Arthroplasty Decrease the Quality of Post-op Rehabilitation (A Case Report)

- Prevention of possible complications;
- Education of transfers;
- Normal gait recovery with correction of eventual abnormal walking scheme;
- Activities of daily living (ADL) training;
- Amelioration of autonomy in everyday life;
- Psycho-emotional stimulation;
- Enhancement of the health-related quality of life;
- Home adaptations;
- Recovery of functionality at home and resocialization.

Methods:

- **Antalgics** – Paracetamol or Paratramol;
- **Anti-thrombotic drugs** – daily subcutaneous application of low molecular-weight heparin – Fraxiparine; for 3 months;
- **Patient’s education**;
- **Transfers training**;
- **Posture** (activity modification),
- **Preformed physical modalities**: Transcutaneous electro-neuro-stimulation (TENS) for pain relief, low intensity low frequency magnetic field (MF) for edema reduction.
- **Cryotherapy** - for the knee joint (before the massage and the kinesitherapy);
- **Massage** – classic massage (relaxing for the rectus femoris muscle; stimulating for vastus lateralis and vastus medialis),
- **Individualized physio-therapeutic (PT) programme**: Correct leg position, lower limb joint mobilization (active range of motion), analytic exercises for vastus muscles (accentuating on vastus medialis obliquus); post-isometric relaxation /PIR/ for rectus femoris muscle;
- **Balance and gait training** with supporting walker or two crutches, education in mobility with obstacles, up and down the stairs.
- **Occupational therapy (OT) & ADL training**.

The applied **Physiotherapy protocol** includes:

- **ROM techniques** - passive and active mobilizations of the knee joint; passive mechanotherapy (device Kinetic);
- **Proprioceptive training**;
- **Strengthening (active) exercises** for the basic muscles of the principal kinetic chains of lower extremities and for stabilizers of the hip, knee and ankle joints (gluteus medius & glutaeus maximus; ilio-psoas muscle; tight abductors and adductors; quadriceps femoris, hamstrings; triceps surae, tibialis anterior and peroneus longus; flexors and extensors of the ankle and toes),
- **Analytic exercises** for the quadriceps muscle (with special attention to the heads vastus lateralis & vastus medialis obliquus);
- **Stretching exercises** for the gastrocnemius – soleus complex, for the quadriceps and for the hamstrings;
- **PIR** (necessary in this case) for some muscles: rectus femoris, soleus, ilio-psoas;
- **Exercises for activation of the muscle pump of lower extremities** – active flexion and extension of the toes and ankles – every hour during the rehabilitation.

The complex PT / OT program includes too balance and gait training, with technical aids (walker at the beginning, two crutches, two canes, one cane).

During gait rehabilitation the principle of **progressive weight bearing (WB)**, with restoration of the **correct gait pattern**, was considered (no WB for the first post-op week, after that – progressive augmentation of the WB).
2.3 Results of the Applied PRM Programme and Future Recommendations after the Rehabilitation

We Observed:

- Amelioration of the ROM of the left knee: active flexion 95°, full extension;
- Amelioration of the functional capacity: 10 meters walk test – 6.5 seconds;
- Independent stand up and transfers - Timed Up & Go test 5.2 sec;
- Independent gait with crutches – in the room and the corridor;
- Balance & Gait stabilization;
- Pain relief in lower limbs – Visual analogue scale 2/10;
- Revascularization of the operated limb (Fig. 5c);
- Amelioration of the autonomy in ADL.

Treatment plan after the exit from the hospital includes Auto-PT at home: Physiotherapy every day at the 3rd month post-op; Exercises for the muscle pump of lower extremities; Gait training – with crutches; Next hospitalization for rehabilitation - 3 months later.

Fig. 5. Black necrotic spot before operation [a] and sic necrosis after revascularization [c]; Post-operative cicatrix [b & d]

3. DISCUSSION

3.1 The Current Case

For the obligatory prevention of Deep Vein Thrombosis and Pulmonary Embolism after joint replacement operation of lower extremities, in this case we used the Low-Molecular-Weight Heparin Fraxiparine (in sub-cutaneous application).
The observed Arteritis with a subsequent Arterial Thrombosis is a relatively rare, but logical and dangerous complication in patients after total hip or knee replacement. We must begin to think about this possibility in post-op rehabilitation departments, especially in patients after total joint replacement (of the hip, knee or shoulder).

3.2 The PRM Complex

According to the definition of the European Union of Medical Specialists – PRM Section [1] Physical and Rehabilitation Medicine (PRM) is an independent medical specialty, oriented to the promotion of physical and cognitive functioning, activities (including environment), participation (including quality of life) and changes in personal factors and environment. The specialty PRM is responsible for the management of the prevention, diagnostics, treatment and rehabilitation of patients with health-related disability and co-morbidity of all ages.

According to the White Book on Physical and Rehabilitation Medicine [1] the basic objective of PRM is the optimization of social participation and the amelioration of the quality of life of patients. This includes the aid of the patient to reach possible levels and patterns of autonomy and independence, including participation in professional, social and leisure activities, part of his human rights [5].

Tasks of PRM are: Treatment of existing pathology; reduction of disability; prevention and therapy of complications; amelioration of functioning and activity; stimulation of patient’s participation in different types of activities [5,11,12].

In orthopedic and traumatologic (OT) conditions, including after orthopedic surgery, during clinical assessment we emphasize on some specific analyses:

- Pain (localization, type, intensity – verbal or visual analogue scale; modifying pain activities);
- Joint stability (including joint position sense) and range of motion (active and passive);
- Presence of oedema, muscle or joint contractures;
- Evaluation of the muscle force / muscle insufficiency, motor deficit;
- Analysis of the grasp and gait;
- Mobility (necessity of technical aids - canes, walking sticks, crutches, walkers, wheelchairs and other devices);
- Fatigue (physical endurance, necessity of rest during the examination or the functional activity);
- Autonomy in everyday activities (bathing, dressing, eating, putting shoes on, personal hygiene, necessity of help in everyday activities).

Evaluation of problems must be qualitative and quantitative, including: fatigue, motor deficiency, coordination problems (body position, gait, grasp); pain; conscience for the necessity of technical aids; difficulties in ADL; limitations in functional mobility [9].

The complexity of rehabilitation in OT cases imposes the necessity of a holistic approach to the patient – detailed functional analysis before and after the rehabilitation courses; application of therapeutic methods of different medical specialties (principally orthopedics and traumatology; neurology and neurosurgery; rheumatology; PRM) and from non-medical fields (kinesitherapy, sociology, psychology, occupational therapy). We apply basic principles of the specialty Physical and Rehabilitation medicine [5,9,12,13].

In every phase of the rehabilitation process we must define precisely the goal, tasks and algorithms of rehabilitation. In every case our goal is to assure a high quality of the rehabilitation, optimal for the clinical form of the principal disease or condition, adapted to the age, co-morbidities, capacity and preferences of the concrete patient; with the strategic objective to receive the best result for his quality of life. We must put emphasis on gait training, autonomy in everyday activities, pain control [13,14,15].

4. CONCLUSION

Current case demonstrate that vascular complications after joint replacement can postpone or even suspend the rehab process. The principal lesson for the clinical rehabilitation practice is that in every
patient the PRM & OT medical doctors must be immediately alerted for any suspicion for complication (arteritis, deep venous thrombosis, pulmonary embolism, infection, excessive oedema) or significant variation of expected progression / outcomes.

CONSENT

All authors declare that 'written informed consent was obtained from the patient for publication of this case report and accompanying images'. Protection of privacy of the patient is confirmed.

ETHICAL APPROVAL

All authors hereby declare that the work have been examined and approved by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

13. White Book on Physical and Rehabilitation Medicine in Europe. Third Edition. European PRM Bodies Alliance: European Academy of Rehabilitation Medicine, European Society of PRM,

Biography of author(s)

Prof. Ivet Borissova Koleva
Medical University of Sofia, Bulgaria.

She is a medical doctor, specialist in Neurology and in Physical & Rehabilitation Medicine (PRM); with 30+ years of clinical practice. She has completed her PhD thesis on “Physical Prevention and Therapy of Diabetic Polyneuropathy”; and a thesis for Doctor-es-Medical Sciences on “Neurorehabilitation in patients with socially important neurological diseases”. She received the titles of Associate professor (2006) and Professor (2010) in PRM. She is working as a professor at the Medical University of Sofia, Bulgaria. She is consulting PRM specialist in 1 University Hospital and 1 Specialized Rehabilitation hospital in Sofia. She is the author of 120 scientific papers, 12 monographs and 15 manuals in the fields of Rehabilitation, Manual Medicine, Grasp & Gait rehabilitation, Functional evaluation, Pain management, Kinesiology and Pathokinesiology, Neurorehabilitation, Orthopedic rehabilitation. Supervisor of 6 completed Ph.D. and 23 Master’s thesis. Chief Editor of 3 Bulgarian scientific peer reviewed journals (“Neurorehabilitation”, “Prevention and Rehabilitation”, “Physical, Health Resort and Rehabilitation Medicine”).

Dr. Frederic Milvoy
Hospital St Amand Montrond, France.

He is a medical doctor, specialist in Physical & Rehabilitation Medicine (PRM); with 35+ years of clinical practice in the field of rehabilitation, gerontology and geriatry. Actually, he works as a Head of the PRM Department of the Hospital of Saint Amand Montrond, France.

Borislav Radoslavov Yoshinov
Medical Faculty of Sofia University, Bulgaria.
He is a Bachelor in Physiotherapy; actually, he is student in Medicine. He has completed many professional and educational courses: “Classical and therapeutic massage”, “Proprioceptive Neuro-Muscular Facilitation (PNF)”; “Bobath”; “Applied Kinesiology”; “Principles of medical rehabilitation and occupational therapy in neurology, neurosurgery and psychiatry”; “Neurorehabilitation and occupational therapy in rare diseases”; “International Classification of functioning, Disability and Health”, etc. Languages: English, French, Russian.

© Copyright 2019 The Author(s), Licensee Book Publisher International, This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

DISCLAIMER
This chapter is an extended version of the article published by the same authors in the following journal with CC BY license. International Journal of Medical and Pharmaceutical Case Reports, 10(1): 1-8, 2017.

Reviewers’ Information
(1) Ali Al Kaissi, Orthopedic Hospital of Speising, Austria.
(2) Parth Shalesh Trivedi, C. M. Patel College of Physiotherapy, Kadi Sarva Vishaavidyalaya, India.