Sweat Potassium Decreases with Increased Sweating in Perimenopausal Women

Emmanuel Amabebe¹*, Sonia I. Osayande²+, Janet O. Nzoputam² and Andrew C. Ugwu²

DOI:10.9734/bpi/ctmmr/v2

ABSTRACT

Introduction: Perimenopause also known as menopausal transition is the period of a woman's life preceding the occurrence of menopause. During the menopausal transition stage, increased hot flushes and night sweats are the most frequently reported symptoms. In premenopausal women, cyclic changes in plasma and sweat Na⁺ concentrations (but not K⁺) corresponding with hormonal fluctuations during the menstrual cycle have been documented.

Objective: To investigate the relationship between rate of sweat production and sweat potassium concentration in premenopausal (PreM), perimenopausal (PeriM) and postmenopausal (PostM) women after a moderate exercise.

Study Design: This is a cross-sectional study conducted in May 2012 at the Department of Physiology, University of Benin, Nigeria.

Methods: Thirty healthy female volunteers comprising of PreM (aged: 22.5±0.8 yrs, n = 10), PeriM (aged: 46.5±1.1 yrs, n = 10), and PostM (aged: 52.2±0.9 yrs, n = 10) participated in the study. Sweat was obtained with a sweat suction apparatus from a 120 cm² circular area marked on the skin of the face and neck after a 15 min walk on a calibrated treadmill at a speed of 4.2 km/h at 27°C and a relative humidity of 85-95%, followed by measurement of sweat volume (SV) and [K⁺]. Sweat rate (SR) was determined by dividing the volume of sweat produced by the duration of exercise. Thirst perception (TP) was self-rated using the Visual Analogue Scale (VAS).

Results: The PeriM women demonstrated higher SR (ml/min) (P = 0.01) and SV (ml) (P = 0.0006) compared to women in the other groups: SR (PeriM = 0.12±0.01; PreM = 0.07±0.02; PostM = 0.06±0.01), and SV (PeriM = 1.7±0.2; PostM = 0.9±0.1). However, they had lower sweat [K⁺] (mmol/l) (P = 0.04), compared to their PostM counterparts (PeriM = 19.98±1.5; PostM = 24.9±1.8). Furthermore, sweat [K⁺] was inversely associated with SR (r = -0.4, P = 0.02); and change in TP (cm) was highest (P = 0.001) in the PeriM women (PeriM = 2.5±0.3; PreM = 2.1±0.3; PostM = 0.99±0.2).

Conclusion: Although excessive sweating can lead to depletion of the body's potassium concentration, the sweat potassium concentration decreases with increased sweating especially in perimenopausal women. This data indicate that sweat potassium concentration decreases with increased sweating in middle-aged women, and perimenopausal women excrete higher volumes of hypotonic sweat compared to pre- and postmenopausal women. This warrants further investigation, as it could be an adaptive mechanism inhibiting excessive potassium loss.

Keywords: Sweat rate; sweat volume; sweat potassium; menopause; exercise.

1. INTRODUCTION

Perimenopause also known as menopausal transition is the period of a woman's life preceding the occurrence of menopause. Hormonal changes and clinical symptoms occur over a period leading up to and immediately following menopause; this period is frequently termed the climacteric or perimenopause but is increasingly referred to as the menopausal transition [1,2]. It includes the period

¹Department of Physiology, Niger Delta University, Wilberforce Island, Bayelsa State, Nigeria.
²Department of Physiology, University of Benin, Benin City, Edo State, Nigeria.
*Corresponding author: E-mail: emmanuelamabebe@yahoo.com;
+Joint first author
Because the sweat rate is greater in the perimenopausal stage of a woman’s life and excessive compensatory responses such as vasodilation, sweating, and shivering. The flush is not a release of especially potassium in these women. Studies suggest that these women have a narrower zone of temperature regulation, and therefore smaller changes in core body temperature produce compensatory responses such as vasodilation, sweating, and shivering. The flush is not a release of accumulated body heat but a sudden inappropriate activation of the heat release mechanism [35].

Factors that are toxic to the ovary often result in an earlier age of menopause. For example, women who smoke or have had surgery on their ovaries, or have had a hysterectomy, despite retention of their ovaries, may experience early menopause [13].

During the menopausal transition stage, increased hot flushes and night sweats are the most frequently reported symptoms [9,14-17]. About 78-85% of perimenopausal women experience hot flushes [18-20]. This is attributed to the decline in ovarian oestrogen levels, thermoregulatory vasodilatory effect of Gonadotrophin releasing hormone (GnRH) and elevated Follicle-stimulating hormone (FSH) [21-23]. Similarly, anxiety is strongly linked to hot flushes, independently of the menopausal status, estradiol levels and smoking [24]. However, it is suggested that this association is due to the overlapping of anxiety's somatic symptoms and the hot flushes' physical manifestations, given that these vasomotor symptoms are connected with the somatic dimension of anxiety, but not with the affective one [25,26].

Excessive sweating from hot flushes and night sweats can deplete the body’s potassium levels [27]. Sweat rate is higher in perimenopausal women than in premenopausal and postmenopausal women [16], and excessive sweating during menopause depletes some of the body’s essential nutrients, especially potassium [27].

In premenopausal women, cyclic changes in plasma and sweat Na⁺ concentrations (but not K⁺) corresponding with hormonal fluctuations during the menstrual cycle have been documented [28]. Since young healthy women are subjected to hormonal variations in various phases of the menstrual cycle, the relationship between the menstrual cycle phase and possible impact on the levels of plasma lipid and lipoproteins and hence Coronary Heart Disease (CHD) risk is of considerable interest [29,30]. Antidiuretic hormone levels undergo fluctuations parallel to that of oestrogen during the menstrual cycle and are increased in postmenopausal women after oestrogen administration indicative of a resultant increase in fluid retention [28,31]. This is due to the osmotic effect of oestrogen leading to increased salt and water retention in reproductive-age women, compared to postmenopausal women [30,32]. This appears to be unaffected by changes in potassium excretion [30]. Interestingly, both estrogen exposure and gonadotropin levels in menopause can be elevated by conditions such as obesity and insulin resistance, which are both related to inactivity [30]. However, progesterone can increase sodium and water excretion through its antagonistic effect on mineralocorticoid (type 1) receptors. It causes transient natriuresis by inhibiting the aldosterone-dependent Na⁺ reabsorption at the distal tubules of the nephron [30]. Most progestins do not possess this antimineralocorticoid effect so have little impact on the water and sodium retention properties of estrogens [30]. Oestrogen also reduces hot flushes by elevating the core body temperature sweating threshold [33].

Though the sweat patterns and hot flushes of women in menopausal transition stage has been studied extensively [20,34] there is a dearth of information on the variations in sweat electrolytes especially potassium in these women. Studies suggest that these women have a narrower zone of temperature regulation, and therefore smaller changes in core body temperature produce compensatory responses such as vasodilation, sweating, and shivering. The flush is not a release of accumulated body heat but a sudden inappropriate activation of the heat release mechanism [35]. Because the sweat rate is greater in the perimenopausal stage of a woman’s life and excessive
sweating can lead to depletion of the body’s electrolytes including potassium, this study determined
the association between rate of sweat production and sweat potassium excretion in premenopausal (PreM), perimenopausal (PeriM) and postmenopausal (PostM) women. It tested the hypothesis that women in the perimenopausal stage appear to have higher sweat potassium levels compared to their pre- and postmenopausal counterparts.

2. MATERIALS AND METHODS

2.1 Participants and Experimental Procedure

This was a cross-sectional study conducted in May 2012 at the Department of Physiology, University of Benin, Nigeria. Eligible participants were randomly selected, healthy active women who consented to being part of the study following adequate information of the experimental procedures. Thirty minutes after presentation at the laboratory, participants were allowed to acclimatise and baseline anthropometric parameters, medical and menstrual histories were obtained. From information obtained via questionnaires completed by participants, trained athletes, smokers, diabetics, pregnant women and patients with musculoskeletal and/or cardiopulmonary diseases were excluded from the study. None of the participants had any clinically proven thyroid dysfunction, depression, sleep disturbances or was involved in regular physical exercise within the last six months before recruitment. Following recruitment, the women who satisfied the inclusion criteria (N = 30), were classified into PreM (n = 10), PeriM (n = 10), and PostM (n = 10), based on their ages and menstrual cycle history.

Participants’ body mass index (BMI), was estimated by dividing their weight by the square of their height (m), i.e. BMI = weight (kg)/height (m²) [36]. The baseline skin temperature, systolic (SBP) and diastolic (DBP) blood pressures were also measured and the mean arterial pressure (MAP) estimated [i.e. MAP = DBP + 1/3 (SBP- DBP)], while the arterial pulse was measured from the right radial artery during exercise.

2.2 Sweat Collection, Handling and Analysis

Sweat samples were obtained with the aid of a sweat suction apparatus from a 120 cm² circular area marked on the skin of the face and neck regions, after a 15 min walk on a calibrated treadmill, at a speed of 4.2 km per hour and an ambient temperature of ~27°C and a relative humidity of 85-95% [36]. After sweat collection, Sweat volume (SV) was measured and samples were preserved at -4°C until required for further analysis. Sweat rate (SR) was determined by dividing the volume of sweat produced by the duration of exercise.

From the collected sweat sample, sweat potassium concentration [K⁺] was determined by photoelectric flame photometry using the improved FP-640 (Ningbo Hinotek Technology Co., Ltd, CN).

2.3 Thirst Perception Rating

Thirst perception (TP) was self-rated before and after the exercise protocol by a mark across a 10 cm scale (Visual analogue scale), with its top and bottom labeled “very thirsty” and “not thirsty” respectively [37,38]. This was performed in response to the question “How thirsty do you feel now?” in each instance i.e. before and after exercise. The change in TP was subsequently estimated. This subjective method of thirst rating is highly reliable and reproducible within individuals [30,39], and correlates with amount of water ingested [40].

2.4 Data Analyses

All statistical analyses were performed on GraphPad Prism 6.0c (GraphPad Software, Inc. CA). Both Student’s t-test and one-way Analysis of variance (ANOVA), were performed to compare differences in SR, SV, S[K⁺], and TP changes between the groups. The Student’s t-test was performed when
comparing observations between 2 groups (e.g. PreM vs. PeriM or PeriM vs. PostM), while ANOVA was used when comparison was made between the 3 groups (i.e. PreM vs. PeriM vs. PostM). Values are quoted as mean ± SEM, and relationships between the variables were determined by Pearson’s correlation coefficient (r). Probability (P) values < 0.05 were considered statistically significant. In addition, using the MetaboAnalyst 3.0 software (TMIC, CA), Partial Least Squares - Discriminant Analysis (PLS-DA) was performed in order to enhance the separation between the groups, and to determine which variable(s) possess the highest discriminative information.

3. RESULTS

As expected the older women in the PeriM and PostM groups had significantly higher BMI and systolic blood pressure compared to the PreM women. However, the baseline skin temperature, diastolic blood pressure, mean arterial pressure, and pulse rate (during exercise) were similar between the groups (Table 1).

Our data showed the PeriM women demonstrated a significantly higher SR compared to the PreM and PostM women (P = 0.01), whilst their SV was significantly higher than that of the PostM women only (P = 0.0006) (Fig. 1A-B). However, the sweat [K⁺] was significantly lower in the PeriM women compared with their PostM counterparts (P = 0.04) (Fig. 1C). Also, the PeriM women indicated the most significant change in TP, whilst their PostM counterparts recorded the least change (P = 0.001) (Fig. 1D).

<table>
<thead>
<tr>
<th>Table 1. Baseline characteristics of study participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premenopausal</td>
</tr>
<tr>
<td>women (n = 10)</td>
</tr>
<tr>
<td>Age (years)</td>
</tr>
<tr>
<td>BMI (kgm⁻²)</td>
</tr>
<tr>
<td>Skin temperature (°C)</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
</tr>
<tr>
<td>MAP (mmHg)</td>
</tr>
<tr>
<td>Pulse rate/min (during exercise)</td>
</tr>
</tbody>
</table>

BMI, Body Mass Index; SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure. Data presented as mean ± SEM

3.1 Relationship between Sweat Secretion, Thirst Perception and Sweat Potassium Concentration

While we observed an inverse relationship between rate of sweat production (i.e. SR and SV), and sweat [K⁺], this correlation was only statistically significant between SR and sweat [K⁺] (P = 0.02) (Fig. 2A-B). In other words there was a significant decrease in sweat potassium excretion with increase in SR. Although not statistically significant, there was also a positive correlation between change in TP and sweat [K⁺].

3.2 Discriminative Ability of Measured Variables

Analysis of the median variable importance in projection (VIP) scores showed sweat [K⁺] with a VIP score > 1 in all groups had the highest discriminative capacity (Fig. 3). The PeriM women showed lower sweat [K⁺], but higher SR, SV and TP compared to the PreM and PostM women (Fig. 3A and B), whilst the PostM women showed higher sweat [K⁺] and SR, but lower SV and TP compared to the PreM women (Fig. 3C).
The study examined the association between rate of sweat production and sweat potassium excretion in middle-aged women in different stages of their reproductive life (pre-, peri- and postmenopause). In contrast to our initial conjecture, we observed an inverse association between rate of sweat production and sweat potassium excretion. Moreover, compared to the postmenopausal women, the perimenopausal women excreted significantly greater volume of sweat at a higher rate but with lesser amounts of potassium. A similar trend was also observed in relation to the premenopausal women, albeit not statistically significant.

In a previous study, a significantly higher sweat rate in perimenopausal women compared to their pre- and postmenopausal counterparts, and an association between rate of sweat production, sweat sodium concentration and degree of thirst perception was reported [36]. In line with this, the current data indicated a decrease in sweat potassium with an increase in sweat rate, and a decrease in sweat potassium in the perimenopausal women compared to the other groups despite their higher rate of sweat production. The perimenopausal women excreted higher amounts of hypotonic sweat in relation to their pre- and postmenopausal counterparts. It is not surprising that the premenopausal women exhibited decreased sweat rate and volume compared to the perimenopausal women. This is in agreement with established evidence that oestrogen stimulates increased body water retention via
arginine vasopressin (AVP) [30,32], and mitigates hot flushes by elevating the core body temperature sweating threshold [33]. But unexpectedly, the postmenopausal women also excreted lesser volumes of sweat compared to the perimenopausal women despite the knowledge of higher oestrogen levels in perimenopausal transition than in postmenopausal stage [9,34].

Relationship between rate of sweat secretion, sweat potassium concentration and change in thirst perception

Although the perimenopausal women excreted the least amounts of sweat potassium, they also exhibited the highest degree of change in thirst perception after a moderate physical exercise compared to women in the other groups. Change in thirst perception was also directly related to sweat potassium though not statistically significant. This is similar to our previous observation with sweat sodium level [36], and can be attributed to the increased desire to drink induced by excess fluid and electrolytes loss [41]. The high degree of thirst sensation in the perimenopausal women could be due to the higher amount of fluid lost in form of sweat and the attendant increase in plasma osmolality as a consequence of increased electrolyte (K⁺) retention [42,43].

Sweat sodium loss is reduced by aldosterone at the expense of potassium. Aldosterone secretion is mainly regulated by the renin-angiotensin system and serum potassium ion concentration. Aldosterone secretion by the adrenal cortex is directly stimulated by potassium levels while aldosterone in turn decreases serum potassium by stimulating its excretion by the sweat glands,
kidney, salivary glands and distal intestinal tract [44]. In contrast to this established viewpoint, the current data show a reduction in sweat potassium excretion with increased sweat production. The underpinning mechanism of this observation is unclear. However, it is suggestive of an adaptive mechanism inhibiting depletion of the body’s potassium level especially in the perimenopausal women who also indicated the least sweat potassium levels.

Impact of rate of sweat secretion, sweat potassium concentration and change in thirst perception in pre-, peri- and postmenopausal women

A non-significant reduction in sweat sodium level in perimenopausal women despite higher sweat rate has also been observed [36]. Similarly, the current study shows significantly lower sweat potassium in the same group of women at least in relation to the postmenopausal women. In addition to the well-established role of aldosterone on sodium and potassium regulation, cortisol is also known to exert some level of mineralocorticoid activity comparable to that of aldosterone. Interestingly, alteration in the circadian rhythm of cortisol in women with greater frequency of hot flushes has been reported [45], and sex hormones (i.e. oestrogen and progesterone) have been shown to increase sodium and water retention via AVP and renin-angiotensin-aldosterone stimulation in young and postmenopausal
women [30,32]. Taken together, the current data could be indicative of a reduced or altered physiological role of the sex hormones and/or mineralocorticoids in the perimenopausal women. Further investigation of the role of these hormones on sweat sodium:potassium ratio in a larger cohort of women across various stages of menopause is necessary.

5. LIMITATIONS

Though the current findings are thought provoking, to substantiate these claims, there is the need for a more robust investigation of the possible factors and mechanisms responsible for these observations particularly in the perimenopausal women. The relatively small sample population (due to our strict exclusion criteria) and the lack of data on the stage of menstrual cycle and hormonal levels, as well as thyroid function test at the time of recruitment are identifiable limitations to this study. Also, we obtained sweat samples from the face because menopausal sweating is reported most frequently around the face, head, neck and chest [20,34]. However, the site or region of sweat sample collection could be a source of variation in sweat production and tonicity. Furthermore, though anticipated, the significantly higher BMI of the older women in the perimenopausal and postmenopausal groups compared to the premenopausal group may have impacted the findings. This is because women with high BMI are known to experience more severe and longer durations of hot flushes [34,46,47]. Lastly, being a cross-sectional study conducted at a specific time point [48], the progression of events especially during the menopausal transition stage was not monitored; hence a causal relationship between rate of sweat production and sweat potassium loss in menopausal women cannot be inferred. Despite these limitations, the findings have rekindled more interest in the endocrinology, metabolism and fluid homeostasis of women in the menopausal transition stage, which has hitherto suffered considerable neglect. Going forward, longitudinal investigations in larger cohorts with defined stages of menstrual cycle, sex hormone levels, thyroid function status etc. are recommended.

6. CONCLUSION

This data indicate that sweat potassium concentration decreases with increased sweating in middle-aged women, and perimenopausal women excrete higher volumes of hypotonic sweat compared to pre- and postmenopausal women. Although excessive sweating can lead to depletion of the body’s electrolytes including potassium, the sweat potassium decreases with increased sweating especially in perimenopausal women. This warrants further investigation, as it could be an adaptive mechanism inhibiting excessive potassium loss.

ETHICAL APPROVAL

This study was reviewed and approved by University of Benin Ethical Committee.

ACKNOWLEDGEMENTS

The authors thankfully acknowledge our devoted study participants and technical assistance of the Departments of Chemical Pathology and Physiology, University of Benin.

Part of our data and abstract was presented and published in the Proceedings of the Physiological society, 37th world congress of the International Union of Physiological Sciences (IUPS), Birmingham, UK, 2013; PCC247 (Poster). http://www.physoc.org/proceedings/abstract/Proc%2037th%20IUPSPCC247

COMPETING INTERESTS

Authors declare no competing interests exist.

REFERENCES

4. Santoro N. Perimenopause: From research to practice. J Womens Health (Larchmt); 2015. DOI:10.1089/jwh.2015.5556

Biography of author(s)

Dr. Emmanuel Amabebe

Department of Physiology, Niger Delta University, Wilberforce Island, Bayelsa State, Nigeria.

He is a physiologist with a PhD in Reproductive and Developmental Medicine from the University of Sheffield (2016), where he investigated the cervico-vaginal microbiota-metabolite phenotypes that predict preterm birth, and explored key pathophysiological mechanisms of infection-inflammation-associated preterm birth. He previously obtained a Masters degree in Physiology from the University of Benin, Nigeria where he investigated the relationship between thirst perception, plasma osmolality and arginine vasopressin concentration in humans. These gave rise to several scholarly publications and presentations in reputable international peer reviewed journals and scientific conferences. He currently works on the PRIME project (http://primeglobalhealth.co.uk) investigating the use of metabolomics and molecular biology techniques to explore the mechanisms and diagnostics of infection-inflammation-associated preterm birth in low- and middle-income countries in comparison to high-income countries by studying human gestational tissues and body fluids including placenta and cervico-vaginal secretions.

Mrs. Sonia I. Osayande

Department of Physiology, University of Benin, Benin City, Edo State, Nigeria.

She is a Doctoral student at the Department of Physiology, University of Benin, Nigeria investigating sweating patterns in perimenopausal women. She has been a laboratory technologist in the same department engaged in research and laboratory demonstrations for over 8 years with several publications in reputable peer review journals. She was awarded a Master of Science degree in Physiology from the same University in 2014, and Bachelor of Science degree in Physiology from the Ambrose Alli University, Ekpoma, Nigeria in 2008.

Mrs. Janet O. Nzoputam

Department of Physiology, University of Benin, Benin City, Edo State, Nigeria.

She is a lecturer and Doctoral researcher in the Department of Physiology, University of Benin, Nigeria, where she was also awarded a Master of Science degree in 2013 and Bachelor of Science degree in 2008. She has been very active in teaching and research since 2014 with over 8 scientific publications in both local and international journals. Due to her outstanding
performance in teaching and research, she was awarded the best lecturer of the year in the School of Basic Medical Sciences, University of Benin in 2017. She is also an active member of the Physiological Society of Nigeria. She currently investigates antidiuretic hormone, copeptin concentrations and thirst perception in sickle cell disease patients in steady state.

Professor (Sir) Andrew C. Ugwu

Department of Physiology, University of Benin, Benin City, Edo State, Nigeria.

He is a Professor of Physiology, University of Benin, Nigeria and the very first sweat scientist (Sweatologist) in West and Sub-Saharan Africa since 1978; a Fellow of the Physiological Society of Nigeria; Chairman, Accreditation Panels for Universities and Affiliated Institutions of NUC and MDCN since 2004. A Commonwealth Scholar for Ph.D programme at University of Glasgow, UK (1984-87); has presented papers at many international conferences; published over hundred articles in national and international journals with over 50% of them in sweat studies; won many awards and grants and has 200,000 downloads of his two articles registered by TOPSCHOLAR(R) Notification System; an external assessor of professors and reviewer of journals; was Head of Department; was rated the Best Lecturer of the Department and Second Best Lecturer of the Faculty in the maiden edition of students’ assessment of Lecturers; a monitor of inaugural lectures and exercise sessions of his University; the Founder and Commander of Federal Road Safety Corps (FRSC) of the University; Chairman of Examination Committee of Postgraduate School; Representative of the Vice-Chancellor at various ceremonies and so on; he has produced many B.Sc., M.Sc. and Ph.D graduates in Physiology and medically-related areas; a Grand Officer of Noble Order of Knights of St. John International of the Catholic Church; distinguished marriage councilor; an Honourable Chief of his town who is married to Professor (Lady) Esther Nkiruka Ugwu, a Professor of English Language (Pragmatics and Discourse Analysis) at University of Benin and they are blessed with seven children.

© Copyright 2019 The Author(s), Licensee Book Publisher International. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

DISCLAIMER
This chapter is an extended version of the article published by the same authors in the following journal with CC BY license.

Reviewers' Information
(1) Mario Bernardo-Filho, Universidade do Estado do Rio de Janeiro, Brazil.
(2) Heethal Jaiprakash, Mahsa University, Malaysia.
(3) Salma Abedmalek, Sousse Faculty of Medicine, Sousse, Tunisia.